Geometric distance and mean for positive semi-definite matrices of fixed rank

نویسندگان

  • Silvere Bonnabel
  • Rodolphe Sepulchre
چکیده

This paper introduces a new distance and mean on the set of positive semi-definite matrices of fixed-rank. The proposed distance is derived from a well-chosen Riemannian quotient geometry that generalizes the reductive geometry of the positive cone and the associated natural metric. The resulting Riemannian space has strong geometrical properties: it is geodesically complete, and the metric is invariant with respect to all transformations that preserve angles (orthogonal transformations, dilations, and pseudo-inversion). The associated distance can be efficiently numerically computed via a simple algorithm based on SVD. The induced mean preserves the rank, possesses the most desirable characteristics of a geometric mean, and is easy to compute.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method

A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...

متن کامل

Riemannian Metric and Geometric Mean for Positive Semidefinite Matrices of Fixed Rank

This paper introduces a new metric and mean on the set of positive semidefinite matrices of fixed-rank. The proposed metric is derived from a well-chosen Riemannian quotient geometry that generalizes the reductive geometry of the positive cone and the associated natural metric. The resulting Riemannian space has strong geometrical properties: it is geodesically complete, and the metric is invar...

متن کامل

Geometric Means

We propose a definition for geometric mean of k positive (semi) definite matrices. We show that our definition is the only one in the literature that has the properties that one would expect from a geometric mean, and that our geometric mean generalizes many inequalities satisfied by the geometric mean of two positive semidefinite matrices. We prove some new properties of the geometric mean of ...

متن کامل

A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices

In this paper we introduce metric-based means for the space of positive-definite matrices. The mean associated with the Euclidean metric of the ambient space is the usual arithmetic mean. The mean associated with the Riemannian metric corresponds to the geometric mean. We discuss some invariance properties of the Riemannian mean and we use differential geometric tools to give a characterization...

متن کامل

Adaptive filtering for estimation of a low-rank positive semidefinite matrix

In this paper, we adopt a geometric viewpoint to tackle the problem of estimating a linear model whose parameter is a fixed-rank positive semidefinite matrix. We consider two gradient descent flows associated to two distinct Riemannian quotient geometries that underlie this set of matrices. The resulting algorithms are non-linear and can be viewed as a generalization of Least Mean Squares that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008